The following research comes from the Spanish website corona2inspect-blogspot.com by Mik Andersen.

The website can now be viewed in English by following this link
https://corona2inspect-blogspot-com.translate.goog/?_x_tr_sl=es&_x_tr_tl=en&_x_tr_hl=es

I have translated and pasted some of the most recent articles below, if you want more - then go to the website and click the Union Jack for English translations.

This analysis, if it is all genuine, is the most detailed study of the COVID vaccine contents I have so far seen. The implications are staggering if this is all true. I would like to see further independent corroboration of these findings, if anyone can help verify the findings I would be grateful to hear from you.

Richard.

25th November 2021

Identification of patterns in vaccines from corona virus: nanorouters

Since graphene oxide was discovered in Coronavirus vaccines, all the findings and discoveries made only confirm its presence (Campra, P. 2021). To date, there has also been more than reasonable evidence and indications of the existence of carbon nanotubes and nano-octopuses , mesoporous spheres , colloidal nano-robots ; objects that should not be part of any vaccine and that are not declared among the components of the same. Additionally, other types of objects have been identified and evidenced in images of blood samples, of people vaccinated with the Coronavirus vaccines, specifically micro-swimmers , nano-antennas of crystallized graphene and graphene quantum dots , as well. known as GQD.

On this occasion, analyzing one of the images obtained by Dr. Campra , corresponding to a sample of the Pfizer vaccine, see figure 1, it has been discovered, which with great probability, is a nanorouter or part of its circuitry. In the original image, a well-defined drop can be seen in which crystalline structures of a quadrangular or cubic format appear. If you look closely, you can see some marks on these crystals, with a regular pattern, well defined in some cases, but limited by the microscope's optics.

Fig. 1. Crystalline formations that show markings of what appear to be circuits. Among these objects, the circuit of what could be a nanorouter has been discovered. Image of a sample of the Pfizer vaccine, obtained by (Campra, P. 2021)

The finding has been made possible by isolating each quadrangular crystal, applying a process of rasterizing, focusing and delineating the edges of the image, in order to further pronounce the observed marks. Once this process was completed, a rough draft was drawn with the lines and patterns inscribed on the glass, creating a clean outline of what actually looked like a circuit. The fact of finding parallel and perpendicular lines with a distribution far from the fractal patterns was very striking, which allowed us to automatically infer the possibility that it had been a product of manufacture. Therefore, similar patterns were searched in the scientific literature, which had a similar scheme, similar to the circuit that had just been drawn. The search result was almost immediate, since the pattern of a quantum dot nanorouter was found, as shown in Figure 2.

Fig. 2. Possible quantum dot nanorouter observed in a quadrangular crystal, in an image obtained by the doctor (Campra, P. 2021). In the lower right corner, the quantum dot nanorouter circuit published by (Sardinha, L.H .; Costa, A.M .; Neto, O.P.V .; Vieira, L.F .; Vieira, M.A. 2013) is observed. Note the obvious resemblance between the sketch, the shape inscribed in the crystal, and the quantum dot circuit.

This discovery is of fundamental relevance, not only to understand the true purpose and components of the Coronavirus vaccines, but also to explain the existence of the phenomenon of MAC addresses, visible through the bluetooth of many mobile devices.

Discovery context

Before proceeding to the explanation of the finding, it is convenient to remember the context in which it is framed, in order to ensure its understanding and subsequent deepening.

First of all, it should be borne in mind that graphene and its derivatives, graphene oxide (GO) and carbon nanotubes (CNT), are part of the components of vaccines, according to what has already been stated in this blog. The properties of graphene are exceptional from a physical point of view, but also thermodynamic, electronic, mechanical and magnetic. Its characteristics allow its use as a superconductor, electromagnetic wave absorbing material (microwave EM), emitter, signal receiver, quantum antenna, which makes it possible to create advanced electronics on a nano and micrometric scale. Such is the case, that it is the fundamental nanomaterial for the development of nano-biomedicine (Mitragotri, S .; Anderson, DG; Chen, X .; Chow, EK; Ho, D .; Kabanov, AV; Xu, C. 2015 ), nano-communication networks (Kumar, MR 2019), new drug delivery therapies (Yu, J .; Zhang, Y .; Yan, J .; Kahkoska, AR; Gu, Z. 2018) and treatments against cancer (Huang, G .; Huang, H. 2018) and the neurological treatment of neurodegenerative diseases (John, AA; Subramanian, AP; Vellayappan, MV; Balaji, A .; Mohandas, H .; Jaganathan, SK 2015 ). However, all the benefits aside, the scientific literature is very clear regarding the health implications for the human body. It is well known that graphene (G), graphene oxide (GO) and other derivatives such as carbon nanotubes (CNT) are toxic in almost all their forms, causing mutagenesis, cell death (apoptosis), release of free radicals, lung toxicity , bilateral pneumonia, genotoxicity or DNA damage, inflammation, immunosuppression, damage to the nervous system, the circulatory, endocrine, reproductive, and urinary systems, which can cause anaphylactic death and multi-organ dysfunction, see page " Damages and toxicity of graphene oxide " and from " Damage and toxicity of carbon-graphene nanotubes ".

Second, graphene is a radio-modulable nanomaterial, capable of absorbing electromagnetic waves and multiplying radiation, acting as a nano-antenna , or a signal repeater (Chen, Y .; Fu, X .; Liu, L .; Zhang , Y .; Cao, L .; Yuan, D .; Liu, P. 2019). Exposure to electromagnetic radiation can cause exfoliation of the material in smaller particles (Lu, J .; Yeo, PSE; Gan, CK; Wu, P .; Loh, KP 2011), called graphene quantum dots or GQD (Graphene Quantum Dots), whose physical properties and particularities improve due to their even smaller scale, due to the "Quantum Hall" effect, since they act by amplifying electromagnetic signals (Massicotte, M .; Yu, V .; Whiteway, E .; Vatnik , D .; Hilke, M. 2013 | Zhang, X .; Zhou, Q .; Yuan, M .; Liao, B .; Wu, X .; Ying, M. 2020), and with it the emission distance, especially in environments such as the human body (Chopra, N .; Phipott, M ​​.; Alomainy, A .; Abbasi, QH; Qaraqe, K .; Shubair, RM 2016). GQDs can acquire various morphologies, for example hexagonal, triangular, circular or irregular polygon (Tian, ​​P .; Tang, L .; Teng, K.S .; Lau, S.P. 2018).

The superconducting and transducing capacity make graphene one of the most suitable materials to create wireless nanocommunication networks for the administration of nanotechnology in the human body . This approach has been intensively worked by the scientific community, after having found and analyzed the available protocols and specifications , but also the routing systems for the data packets that would be generated by nano-devices and nano-nodes within the body, in a system complex called CORONA, whose objective is the effective transmission of signals and data on the network, optimizing energy consumption (to the minimum possible), and also reducing failures in the transmission of data packets (Bouchedjera, IA ; Aliouat, Z .; Louail, L. 2020 | Bouchedjera, IA; Louail, L .; Aliouat, Z .; Harous, S. 2020 | Tsioliaridou, A .; Liaskos, C .; Ioannidis, S .; Pitsillides, A . 2015). In this nanocommunications network, a type of signal TS-OOK (Time-Spread On-Off Keying) is used that allows transmitting binary codes of 0 and 1, through short pulses that involve the activation and deactivation of the signal during time intervals very small of a few femtoseconds (Zhang, R .; Yang, K .; Abbasi, QH; Qaraqe, KA; Alomainy, A. 2017 | Vavouris, AK; Dervisi, FD; Papanikolaou, VK; Karagiannidis, GK 2018). Due to the complexity of nanocommunications in the human body, where the nano-nodes of the network are distributed throughout the body, in many cases in motion, due to blood flow, and in others attached to the endothelium to the arterial walls and capillaries or in the tissues of other organs, researchers have required the development of software for the simulation of such conditions , in order to verify and validate the nanocommunication protocols that were being developed (Dhoutaut, D .; Arrabal, T .; Dedu, E. 2018).

On the other hand, the nanocommunications network oriented to the human body (Balghusoon, A.O .; Mahfoudh, S. 2020), has been carefully designed in its topological aspects, conceiving specialized components in the performance of this task. For example, electromagnetic nanocommunication is formed in its most basic layer by nano-nodes that are devices (presumably made of graphene, carbon nanotubes, GQD, among other objects and materials) that have the ability to interact as nanosensors, piezo-electric actuators , and in any case as nano-antennas that propagate the signals to the rest of the nano-nodes. The nano-nodes, find in the nano-routers (also called nano-controllers) the next step in the topology. Its function is to receive the signals emitted by the nano-nodes, process them and send them to the nano-interfaces, which will emit them to the outside of the body with the necessary frequency and scope, since it must overcome the skin barrier without losing clarity in the signal, so that it can be received by a mobile device at a close enough distance (usually a few meters). That mobile device would actually be a smartphone or any other device with an Internet connection, which allows it to act as a "Gateway". The topology also defines the possibility that the entire infrastructure of nano-nodes, nanorouter and nano-interface is unified in a single nano-device, called pole or metamaterial defined by SDM software (Lee, SJ; Jung, C. ; Choi, K .; Kim, S. 2015). This model simplifies the topology, but increases the size of the device and the complexity of its construction, conceived in several layers of graphene. In any case, regardless of the topology, nanorouters are necessary to route and decode the signals correctly, for their sending, but also for their reception, since they can be designed for a bidirectional service, which de facto implies the ability to receive signals. of commands, orders, operations that interact with the objects of the network.

To electromagnetic nanocommunication, we must add molecular nanocommunication, addressed in the entry on carbon nanotubes and new evidence in vaccine samples. In both publications, the implications of these objects in the field of neuroscience, neuromodulation and neurostimulation are analyzed, since if they are located in neuronal tissue (something very likely, given the ability to overcome the blood-brain barrier), they can establish connections that bridge the neuronal synapse. This means that they link neurons with different shortcuts, shorter than natural axons (Fabbro, A .; Cellot, G .; Prato, M .; Ballerini, L. 2011). Although this can be used in experimental treatments to mitigate the effects of neurodegenerative diseases, it can also be used to directly interfere with neurons, the secretion of neurotransmitters such as dopamine, the involuntary activation of certain areas of the brain, their neurostimulation or modulation, through electrical impulses, generated from carbon nanotubes (Suzuki, J .; Budiman, H .; Carr, TA; DeBlois, JH 2013 | Balasubramaniam, S .; Boyle, NT; Della-Chiesa, A .; Walsh, F .; Mardinoglu, A .; Botvich, D .; Prina-Mello, A. 2011), as a result of the reception of electromagnetic signals and pulses from the nanocommunications network (Akyildiz, IF; Jornet, JM 2010). It is not necessary to warn about what it means that an external signal, not controlled by the inoculated person, is the one that governs the segregation of neurotransmitters. Use an example to raise awareness; carbon nanotubes housed in neuronal tissue could interfere with the natural functioning of the secretion of neurotransmitters such as dopamine, responsible in part for cognitive processes, socialization, the reward system, desire, pleasure, conditioned learning or inhibition (Beyene, AG; Delevich, K .; Del Bonis-O'Donnell, JT; Piekarski, DJ; Lin, WC; Thomas, AW; Landry, MP 2019 | Sun, F .; Zhou, J .; Dai, B. ; Qian, T .; Zeng, J .; Li, X .; Li, Y. 2020 | Sun, F .; Zeng, J .; Jing, M .; Zhou, J .; Feng, J .; Owen, SF ; Li, Y. 2018 | Patriarchi, T .; Mohebi, A .; Sun, J .; Marley, A .; Liang, R .; Dong, C .; Tian, ​​L. 2020 | Patriarchi, T .; Cho, JR; Merten, K .; Howe, MW; Marley, A .; Xiong, WH; Tian, ​​L. 2018). This means that it could be inferred in the normal behavior patterns of people, their feelings and thoughts, and even force subliminal conditioned learning, without the individual being aware of what is happening. In addition to the properties already mentioned, carbon nanotubes not only open the doors to the wireless interaction of the human brain, they can also receive electrical signals from neurons and propagate them to nanorouters, since they also have the same properties as GQD graphene nano-antennas and quantum dots, as explained in (Demoustier, S .; Minoux, E .; Le Baillif, M .; Charles, M .; Ziaei, A. 2008 | Wang, Y .; Wu, Q .; Shi, W .; He, X .; Sun, X .; Gui, T. 2008 | Da-Costa, MR; Kibis, OV; Portnoi, ME 2009). This means that they can transmit and monitor the neuronal activity of individuals.

For the data packets emitted and received from the nanocommunications network to reach their destination, it is essential that the communication protocol implements in some way the unique identification of the nanodevices (that is, through MAC) and transmits the information to an IP address. default. In this sense, the human body becomes an IoNT server (from the Internet of NanoThings) in which the communication client / server model can be assimilated. The mechanisms, commands or types of request remain to be determined, as well as the exact frequency and type of signal that operates the wireless nanocommunications network that would be installed with each vaccine, although obviously this information must be very confidential, given the possible consequences of biohacking. (Vassiliou, V. 2011) that could happen. In fact, in the work of (Al-Turjman, F. 2020) the problems and circumstances of the security of nanocommunications networks connected to 5G (confidentiality, authentication, privacy, trust, intrusions, repudiation) are linked and additionally, it presents a summary of the operation of electromagnetic communication between nano-nodes, nano-sensors and nano-routers, using graphene antennas and transceivers for their link with data servers, in order to develop Big-data projects. It should be noted that the risks of network hacking are very similar to those that can be perpetrated in any network connected to the Internet (masquerade attack, location tracking, information traps, denial of service, nano-device hijacking, wormhole, MITM broker attack, malware, spam, sybil, spoofing, neurostimulation illusion attack), which means a potential and additional, very serious risk for people inoculated with the hardware of a nanocommunication network.

In this context, it is in which the discovery of the circuits of a nanorouter in the samples of the Pfizer vaccine is found, which is a key piece in all the research that is being carried out and that would confirm the installation of a hardware in the body of inoculated people, without their informed consent, which executes collection and interaction processes that are completely beyond its control.

Nanorouters QCA

The discovered circuit, see figure 3, corresponds to the field of quantum dot cellular automata, also known as QCA (Quantum Cellular Automata), characterized by its nanometric scale and a very low energy consumption, as an alternative for the replacement of technology based on transistors. This is how it is defined by the work of (Sardinha, L.H .; Costa, A.M .; Neto, O.P.V .; Vieira, L.F .; Vieira, M.A. 2013) from which the scheme of said circuit was obtained. The nanorouter referred by the researchers is characterized by an ultra-low consumption factor, high processing speed (its frequency clock operates in a range of 1-2 THz), which is consistent with the power conditions and data transfer requirements. , in the context of nanocommunication networks for the human body described by (Pierobon, M .; Jornet, JM; Akkari, N .; Almasri, S .; Akyildiz, IF 2014).

Fig. 3. Graphene quantum dot circuit in QCA cells. Circuit diagram of (Sardinha, L.H .; Costa, A.M .; Neto, O.P.V .; Vieira, L.F .; Vieira, M.A. 2013) observed in a Pfizer vaccine sample.

According to the explanations of the work of (Sardinha, LH; Costa, AM; Neto, OPV; Vieira, LF; Vieira, MA 2013), the concept of quantum dot and quantum dot cell is distinguished, see figure 4. The QCA cell It is made up of four quantum dots whose polarization is variable. This makes it possible to distinguish the binary code of 0 and 1 based on the positive or negative charge of the quantum dots. In the words of the authors it is explained as follows "The basic units of QCA circuits are cells made of quantum dots. A point, in this context, is just a region where an electrical charge can be located or not. A cell QCA has four quantum dots located in the corners. Each cell has two free and moving electrons that can tunnel between the quantum dots. It is assumed that tunneling to the outside of the cell is not allowed due to a high barrier potential". Extrapolated to graphene quantum dots, known as GQDs, which were identified in blood samples (due to emitted fluorescence), a QCA cell would require four GQDs to compose, which is perfectly consistent with the description given by the researchers. This is also corroborated by (Wang, Z.F .; Liu, F. 2011) in his work entitled "Graphene quantum dots as building blocks for quantum cellular automata", where the use of graphene to create this type of circuit is confirmed.

Fig. 4. Scheme of a QCA cell made up of four quantum dots (which can be graphene, among other materials). Note the great resemblance to memristors, in fact QCAs and memristors are transistors. (Sardinha, L.H .; Costa, A.M .; Neto, O.P.V .; Vieira, L.F .; Vieira, M.A. 2013 | Strukov, D.B .; Snider, G.S .; Stewart, D.R .; Williams, R.S. 2009)

When the QCA cells are combined, cables and circuits are created, with a wide variety of shapes, schemes and applications, as can be seen in figure 5, where inverters, crossovers and logic gates are observed, also addressed by other authors such as ( Xia, Y .; Qiu, K. 2008). This gives rise to more complex structures, which allow to reproduce the electronic diagrams of the transistors, processors, transceivers, multiplexers, demultiplexers and consequently of any router.

Fig. 5. QCAs can form various types of circuits, for example logic gates, cable crossovers, inverters or cables. (Sardinha, L.H .; Costa, A.M .; Neto, O.P.V .; Vieira, L.F .; Vieira, M.A. 2013)

It is important to explain that QCA cell-based circuits can operate in several superimposed layers, which allows a 3D (three-dimensional) structure to create much more complex and compressed electronics, see figure 6.

Fig. 6. According to (Sardinha, L.H .; Costa, A.M .; Neto, O.P.V .; Vieira, L.F .; Vieira, M.A. 2013) more complex circuits can be built by annexing several superimposed layers. This is identified by the symbol of a circle in the design. There are also three artistic illustrations that represent various levels of circuits (own elaboration).

To develop a nanorouter, according to the researchers (Sardinha, LH; Costa, AM; Neto, OPV; Vieira, LF; Vieira, MA 2013), several circuit structures are needed, specifically, cable crossings (which form logic gates ), demultiplexers (demux) and parallel-to-serial converters, see figure X. "Demux" are electronic devices capable of receiving a signal at the input QCA and sending it to one of several available output lines. (output), which allows the signal to be routed for further processing. The parallel-to-series converter is a circuit capable of taking several sets of data in an input (input), transporting them through different QCA cables and transmitting them at different moments of time through the output cables (output). This would be very, the component noticed in the vaccine samples, see figure 7.

Fig. 7. Details of the circuit for converting TS-OOK signals in series to a parallel output, confirming one of the typical tasks of a router. (Sardinha, L.H .; Costa, A.M .; Neto, O.P.V .; Vieira, L.F .; Vieira, M.A. 2013)

Another relevant aspect of the work of (Sardinha, LH; Costa, AM; Neto, OPV; Vieira, LF; Vieira, MA 2013) is the demonstration of the operation of the circuit, where the reception of a TS-OOK signal and its conversion to binary code, see figure 8. Once the binary code is obtained, the "demux" circuit is responsible for generating the data packets, according to the structure of the corresponding communications protocol.

Fig. 8. The tests of the demux circuit, already observed in figure 7, provide the proof of how the TS-OOK signals are interpreted and converted to the binary code, to finally generate the data packets of the corresponding nanocommunications protocol. (Sardinha, L.H .; Costa, A.M .; Neto, O.P.V .; Vieira, L.F .; Vieira, M.A. 2013)

Everything explained by (Sardinha, LH; Costa, AM; Neto, OPV; Vieira, LF; Vieira, MA 2013) is also corroborated by (Das, B .; Das, JC; De, D .; Paul, AK 2017) In whose research, QCA circuit designs for demux and nanorouters are observed, with very similar schemes, to those already presented, which confirms the search for solutions for the problem of transmission and simple processing of signals and data at the nano-scale, at in order to make nanocommunication networks effective.

Finally, although it can already be deduced from the nature, characteristics and properties of QCA cell circuits, the concept of clock speed must be highlighted. In fact, interesting is the ability of these electronic components to work almost autonomously, without the need for a dedicated processor. This is because the QCA cell cables can measure the transfer time of the signals between the different cells, in what is called "clock zones", see figure 9 and the following investigations (Sadeghi, M .; Navi, K .; Dolatshahi, M. 2020 | Laajimi, R .; Niu, M. 2018 | Reis, DA; Torres, FS 2016 | Mohammadyan, S .; Angizi, S .; Navi, K. (2015). This effect allows the transmission of signals through the circuit, but it also allows to create a clock frequency, which is its own process speed. If this concept is joined, the use of superconducting materials such as graphene and more specifically graphene quantum dots Then very high processing speeds can be achieved.

Fig. 9. The nanorouter does not require an independent processor, because the QCA cells organized in the circuit cables already perform this function due to the superconducting and polarization properties of the quantum dots, which allows inferring a clock speed by phases or zones. circuit physics. (Sardinha, L.H .; Costa, A.M .; Neto, O.P.V .; Vieira, L.F .; Vieira, M.A. 2013 | Sadeghi, M .; Navi, K .; Dolatshahi, M. 2020)

Circuit self-assembly

Although it seems impossible, the self-assembly of circuits is a possibility to consider in the hypothesis that has been explained. According to (Huang, J .; Momenzadeh, M .; Lombardi, F. 2007) "Recent developments in QCA manufacturing (involving molecular implementations) have substantially changed the nature of processing. At very small feature sizes, it is anticipated self-assembly or large-scale cell deposition on isolated substrates will be used. In these implementations, QCA cells (each composed of two dipoles) are laid out in parallel V-shaped tracks. QCA cells are arranged in a dense pattern and the computation occurs between adjacent cells. These fabrication techniques are well suited for molecular implementation. " However, there are also other methods, such as DNA nanopatterns (Hu, W .; Sarveswaran, K .; Lieberman, M .; Bernstein, GH 2005), with which a template is created for the alignment of the quantum dots of graphene, forming the QCA cells, thereby generating the aforementioned circuitry, see figure 10.

Fig. 10. Self-assembly of a circuit with quantum dots from a DNA pattern. The lines of the circuit cables are very similar to those observed in the vaccine sample, see figures 2 and 3. (Hu, W .; Sarveswaran, K .; Lieberman, M .; Bernstein, G.H. 2005)

According to (Hu, W .; Sarveswaran, K .; Lieberman, M .; Bernstein, GH 2005) "Four-tile DNA rafts have been successfully synthesized and characterized by the gel electrophoresis method in our previous work" according to the work of (Sarveswaran, K. 2004). This fits with the very possible existence of a gel / hydrogel in the vaccine composition, after the doctor's micro-Raman analysis (Campra, P. 2021) in which peaks with values ​​close to 1450 were obtained, which could correspond to PVA, PQT-12, polyolefin, polyacrylamide or polypyrrole , all of them components recognized in the scientific literature as gels and derivatives. On the other hand, the electrophoresis method, or what is the same, the electrical polarization process that causes teslaphoresis, is explicitly alluded to on carbon nanotubes, graphene, quantum dots and other semiconductors, as described (Bornhoeft, LR; Castillo, AC; Smalley, PR; Kittrell, C .; James, DK; Brinson, BE; Cherukuri, P. 2016) in his research. This would confirm that teslaphoresis plays a fundamental role in the composition of circuits, along with DNA patterns. If this is confirmed, it would mean that the circuits could self-assemble in the presence of electric fields or even the reception of electromagnetic waves (microwave EM). The study by (Pillers, M .; Goss, V .; Lieberman, M. 2014) also confirms the construction of nanostructures and CQA using in this case graphene, graphene oxide (GO), electrophoresis and gel, causing controlled deposition in the areas indicated by the DNA pattern, reproducing results similar to those presented in the study by Hu and Sarveswaran, thus making it possible to create the electronic circuits already mentioned, see figure 11.

Fig. 11. Advances in the field of self-assembly of quantum dots and QCA cells can be observed in the scientific literature using the DNA template method to mark the order of construction and electrophoresis to initiate or trigger the process in the materials of the solution. (Pillers, M .; Goss, V .; Lieberman, M. 2014)

Plasmonic nano-emitters

Another issue that requires an explanation in the discovery of the circuit of a nanorouter, in the vaccine sample, is its location in what appears to be a quadrangular crystal. Although it could be thought that it is a randomly generated form, the bibliographic review reveals and justifies this type of form that serves as a framework for this type of circuit. In reality it is a "plasmonic nano-emitter", in other words, it would correspond to a cubic-shaped nano-antenna (single crystal) of variable size on the nano-micrometric scale, which can emit, receive or repeat signals. This is possible through the plasmon activation property of its surface (that of the nanoemitter cube) that is locally excited to generate an oscillatory signal, as explained (Ge, D .; Marguet, S .; Issa, A .; Jradi, S .; Nguyen, TH; Nahra, M .; Bachelot, R. 2020), see figure 12. This agrees with the type of TS-OOK signals, which are transmitted through the intra-body nanocommunication network, being a requirement indispensable for a nano-router, to have a method to capture them. In other words, the crystalline cube acts as a transceiver for the nanorouter, due to its special properties, derived from the physics of the plasmon. This is corroborated when the scientific literature on electromagnetic nano-networks for the human body is consulted (Balghusoon, AO; Mahfoudh, S. 2020), the MAC protocols applied to the case (Jornet, JM; Pujol, JC; Pareta, JS 2012 ), the methods for the debugging of errors in the signals (Jornet, JM; Pierobon, M .; Akyildiz, IF 2008), or the modulation of pulses in femtoseconds in the terahertz band for nano-communication networks (Jornet, JM; Akyildiz, IF 2014), the parameterization of nano-networks for their perpetual operation (Yao, XW; Wang, WL; Yang, SH 2015), the performance in the modulation of wireless signals for nano-networks (Zarepour, E .; Hassan, M .; Chou, CT; Bayat, S. 2015). In all cases, nano-transceivers are essential to be able to receive or emit a TS-OOK signal.

Fig. 12. Nano-micrometric scale crystals can play the role of antenna or transceiver, which makes it possible to imagine that finding the circuit in a quadrangular structure is not the product of chance. (Ge, D .; Marguet, S .; Issa, A .; Jradi, S .; Nguyen, T.H .; Nahra, M .; Bachelot, R. 2020)

Plasmonic nano-emitters can acquire cube shape, which would be the case observed in the vaccine sample, but also spherical and discoidal shape, being able to be self-assembled, to form larger nano-microstructures (Devaraj, V .; Lee, JM; Kim , YJ; Jeong, H .; Oh, JW 2021). Among the materials with which this plasmonic nano-emitter could be produced are gold, silver, perovskites and graphene, see (Oh, DK; Jeong, H .; Kim, J .; Kim, Y .; Kim, I .; Ok, JG; Rho, J. 2021 | Hamedi, HR; Paspalakis, E .; Yannopapas, V. 2021 | Gritsienko, AV; Kurochkin, NS; Lega, PV; Orlov, AP; Ilin, AS; Eliseev, SP; Vitukhnovsky , AG 2021 | Pierini, S. 2021), although it is likely that many others can be used.

CAM and TCAM memory for MAC and IP

If the presence of nanorouters in vaccines is considered, the hypothesis of the existence of one or more MAC addresses (fixed or dynamic) could be confirmed, which could be emitted from vaccinated people or through some other intermediary device (for example a mobile phone ). This approach is in line with what has already been explained and evidenced in this publication, but also according to scientific publications on nano-communication networks for the human body . According to (Abadal, S .; Liaskos, C .; Tsioliaridou, A .; Ioannidis, S .; Pitsillides, A .; Solé-Pareta, J .; Cabellos-Aparicio, A. 2017) these MAC addresses allow the nano- The network can transmit and receive data, because the individual has a unique identifier that allows him to access the medium, that is, the Internet. In this way, the nano-router can receive the signals corresponding to the data from the nano-sensors and nano-nodes of the nano-network to transmit them to the outside of the body, as long as there is a mobile device nearby, which serves gateway to the Internet. Therefore, the hypothesis is feasible that MAC addresses of vaccinated people can be observed (by means of bluetooth signal tracking applications), when there is some type of interaction with the mobile media that act as a link. This does not mean that there is permanent communication, due to the need to save and optimize energy consumption (Mohrehkesh, S .; Weigle, MC 2014 | Mohrehkesh, S .; Weigle, MC; Das, SK 2015), which could explain intermittence in communications, periods of connection and inactivity.

The novelty in the field of MAC addresses, which comes together with the QCA circuits, with which nanorouters can be developed, is that memory circuits can also be created. The same researchers (Sardinha, LH; Silva, DS; Vieira, MA; Vieira, LF; Neto, OPV 2015) developed a new type of CAM memory that "unlike random access memory (RAM), which returns data which are stored at the given address. CAM, however, receives the data as input and returns where the data can be found. CAM is useful for many applications that need fast searches, such as Hought transforms, Huffman encoding, Lempel-compression. Ziv and network switches to map MAC addresses to IP addresses and vice versa. CAM is most useful for creating tables that look up exact matches, such as MAC address tables. " This statement was extracted and copied verbatim to highlight that QCA circuits are the answer to the storage and management of MAC addresses for data transmission in nano-networks, which would confirm that vaccines are, among other things, a means of installing hardware for the control, modulation and monitoring of people.

Fig. 13. Memory circuits for the storage of MAC and IP addresses made with the same QCA technology of the nanorouter observed in the Pfizer vaccine samples. (Sardinha, L.H .; Silva, D.S .; Vieira, M.A .; Vieira, L.F .; Neto, O.P.V. 2015)

Additionally, (Sardinha, LH; Silva, DS; Vieira, MA; Vieira, LF; Neto, OPV 2015) also developed the TCAM memory, which is a special type of CAM memory that would be useful to "create tables to search for longer matches such as IP routing tables organized by IP prefixes. To reduce latency and make communication faster, routers use TCAM. " This statement clearly affects its use in nano-routers in order to be able to transmit the data obtained in the nano-network to a specific recipient server accessible on the Internet. In other words, the data collected by the nano-network should be stored / registered in a database, of which the recipient of the vaccine would not have knowledge of its existence, of which it was not informed, and in the It is unknown what information is used.


Bibliografía

Akyildiz, I.F.; Jornet, J.M. (2010). Redes de nanosensores inalámbricos electromagnéticos = Electromagnetic wireless nanosensor networks. Nano Communication Networks, 1(1), pp. 3-19. https://doi.org/10.1016/j.nancom.2010.04.001

Al-Turjman, F. (2020). Inteligencia y seguridad en un gran IoNT orientado a 5G: descripción general = Intelligence and security in big 5G-oriented IoNT: An overview. Future Generation Computer Systems, 102, pp. 357-368. https://doi.org/10.1016/j.future.2019.08.009

Balasubramaniam, S.; Boyle, N.T.; Della-Chiesa, A.; Walsh, F.; Mardinoglu, A.; Botvich, D.; Prina-Mello, A. (2011). Desarrollo de redes neuronales artificiales para la comunicación molecular = Development of artificial neuronal networks for molecular communication. Nano Communication Networks, 2(2-3), pp. 150-160. https://doi.org/10.1016/j.nancom.2011.05.004

Balghusoon, A.O.; Mahfoudh, S. (2020). Protocolos de enrutamiento para redes inalámbricas de nanosensores e Internet de las nano cosas: una revisión completa = Routing Protocols for Wireless Nanosensor Networks and Internet of Nano Things: A Comprehensive Survey. IEEE Access, 8, pp. 200724-200748. https://doi.org/10.1109/ACCESS.2020.3035646

Beyene, A.G.; Delevich, K.; Del Bonis-O’Donnell, J.T.; Piekarski, D.J.; Lin, W.C.; Thomas, A.W.; Landry, M.P. (2019). Obtención de imágenes de la liberación de dopamina estriatal utilizando un nanosensor de catecolamina fluorescente de infrarrojo cercano no codificado genéticamente = Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor. Science advances, 5(7), eaaw3108. https://doi.org/10.1126/sciadv.aaw3108

Bornhoeft, L.R.; Castillo, A.C.; Smalley, P.R.; Kittrell, C.; James, D.K.; Brinson, B.E.; Cherukuri, P. (2016). Teslaforesis de nanotubos de carbono = Teslaphoresis of carbon nanotubes. ACS nano, 10(4), pp. 4873-4881. https://doi.org/10.1021/acsnano.6b02313

Bouchedjera, I.A.; Aliouat, Z.; Louail, L. (2020). EECORONA: Sistema de Coordinación y Enrutamiento de Eficiencia Energética para Nanoredes = EECORONA: Energy Efficiency Coordinate and Routing System for Nanonetworks. En: International Symposium on Modelling and Implementation of Complex Systems. Cham. pp. 18-32. https://doi.org/10.1007/978-3-030-58861-8_2

Bouchedjera, I.A.; Louail, L.; Aliouat, Z.; Harous, S. (2020). DCCORONA: Sistema distribuido de enrutamiento y coordenadas basado en clústeres para nanorredes = DCCORONA: Distributed Cluster-based Coordinate and Routing System for Nanonetworks. En: 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). IEEE. pp. 0939-0945. https://doi.org/10.1109/UEMCON51285.2020.9298084

Campra, P. (2021a). Observaciones de posible microbiótica en vacunas COVID RNAm Version 1. http://dx.doi.org/10.13140/RG.2.2.13875.55840

Campra, P. (2021b). Detección de grafeno en vacunas COVID19 por espectroscopía Micro-RAMAN. https://www.researchgate.net/publication/355684360_Deteccion_de_grafeno_en_vacunas_COVID19_por_espectroscopia_Micro-RAMAN

Campra, P. (2021c). MICROSTRUCTURES IN COVID VACCINES: ¿inorganic crystals or Wireless Nanosensors Network? https://www.researchgate.net/publication/356507702_MICROSTRUCTURES_IN_COVID_VACCINES_inorganic_crystals_or_Wireless_Nanosensors_Network

Chopra, N.; Phipott, M.; Alomainy, A.; Abbasi, Q.H.; Qaraqe, K.; Shubair, R.M. (2016). THz time domain characterization of human skin tissue for nano-electromagnetic communication. En: 2016 16th Mediterranean Microwave Symposium (MMS) (pp. 1-3). IEEE. https://doi.org/10.1109/MMS.2016.7803787

Da-Costa, M.R.; Kibis, O.V.; Portnoi, M.E. (2009). Nanotubos de carbono como base para emisores y detectores de terahercios = Carbon nanotubes as a basis for terahertz emitters and detectors. Microelectronics Journal, 40(4-5), pp. 776-778. https://doi.org/10.1016/j.mejo.2008.11.016

Das, B.; Das, J.C.; De, D.; Paul, A.K. (2017). Diseño de nanoenrutador para nanocomunicación en autómatas celulares cuánticos de una sola capa =Nano-Router Design for Nano-Communication in Single Layer Quantum Cellular Automata. En: International Conference on Computational Intelligence, Communications, and Business Analytics (pp. 121-133). Springer, Singapore. https://doi.org/10.1007/978-981-10-6430-2_11

Demoustier, S.; Minoux, E.; Le Baillif, M.; Charles, M.; Ziaei, A. (2008). Revisión de dos aplicaciones de microondas de nanotubos de carbono: nano antenas y nanointerruptores = Revue d'applications des nanotubes de carbone aux micro-ondes: nano-antennes et nano-commutateurs = Review of two microwave applications of carbon nanotubes: nano-antennas and nano-switches. Comptes Rendus Physique, 9(1), pp. 53-66. https://doi.org/10.1016/j.crhy.2008.01.001

Devaraj, V.; Lee, J.M.; Kim, Y.J.; Jeong, H.; Oh, J.W. (2021). [Pre-print]. Diseño de nanoestructuras plasmónicas autoensambladas eficientes a partir de nanopartículas de forma esférica = Designing an Efficient Self-Assembled Plasmonic Nanostructures from Spherical Shaped Nanoparticles. International Journal of Molecular Science. https://www.preprints.org/manuscript/202109.0225/v1

Dhoutaut, D.; Arrabal, T.; Dedu, E. (2018). Bit Simulator, un simulador de nanorredes electromagnéticas = Bit simulator, an electromagnetic nanonetworks simulator. En: Proceedings of the 5th ACM International Conference on Nanoscale Computing and Communication (pp. 1-6). https://doi.org/10.1145/3233188.3233205

Fabbro, A.; Cellot, G.; Prato, M.; Ballerini, L. (2011). Interconexión de neuronas con nanotubos de carbono: (re) ingeniería de la señalización neuronal = Interfacing neurons with carbon nanotubes: (re) engineering neuronal signaling. Progress in brain research, 194, pp. 241-252. https://doi.org/10.1016/B978-0-444-53815-4.00003-0

Ferjani, H.; Touati, H. (2019). Comunicación de datos en nano-redes electromagnéticas para aplicaciones sanitarias = Data communication in electromagnetic nano-networks for healthcare applications. En: International Conference on Mobile, Secure, and Programmable Networking (pp. 140-152). Springer, Cham. https://doi.org/10.1007/978-3-030-22885-9_13

Ge, D.; Marguet, S.; Issa, A.; Jradi, S.; Nguyen, T.H.; Nahra, M.; Bachelot, R. (2020). Nanoemisores plasmónicos híbridos con posicionamiento controlado de un único emisor cuántico en el campo de excitación local = Hybrid plasmonic nano-emitters with controlled single quantum emitter positioning on the local excitation field. Nature communications, 11(1), pp1-11. https://doi.org/10.1038/s41467-020-17248-8

Gritsienko, A.V.; Kurochkin, N.S.; Lega, P.V.; Orlov, A.P.; Ilin, A.S.; Eliseev, S.P.; Vitukhnovsky, A.G. (2021). Propiedades ópticas de la nueva nanoantena híbrida en cavidad submicrónica = Optical properties of new hybrid nanoantenna in submicron cavity. En: Journal of Physics: Conference Series (Vol. 2015, No. 1, p. 012052). IOP Publishing. https://doi.org/10.1088/1742-6596/2015/1/012052

Hamedi, H.R.; Paspalakis, E.; Yannopapas, V. (2021). Control efectivo de la biestabilidad óptica de un emisor cuántico de tres niveles cerca de una metauperficie plasmónica nanoestructurada = Effective Control of the Optical Bistability of a Three-Level Quantum Emitter near a Nanostructured Plasmonic Metasurface. En: Photonics (Vol. 8, No. 7, p. 285). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/photonics8070285

Hu, W.; Sarveswaran, K.; Lieberman, M.; Bernstein, G.H. (2005). Litografía por haz de electrones de alta resolución y nanopatrones de ADN para QCA molecular. IEEE Transactions on Nanotechnology, 4(3), pp. 312-316. https://doi.org/10.1109/TNANO.2005.847034

Huang, G.; Huang, H. (2018). Aplicación de dextrano como portadores de fármacos a nanoescala = Application of dextran as nanoscale drug carriers. Nanomedicine, 13(24), pp. 3149-3158. https://doi.org/10.2217/nnm-2018-0331

Huang, J.; Momenzadeh, M.; Lombardi, F. (2007). Diseño de circuitos secuenciales por autómatas celulares de puntos cuánticos = Design of sequential circuits by quantum-dot cellular automata. Microelectronics Journal, 38(4-5), pp. 525-537. https://doi.org/10.1016/j.mejo.2007.03.013

Huang, J.; Xie, G.; Kuang, R.; Deng, F.; Zhang, Y. (2021). Circuito de código Hamming basado en QCA para redes de nanocomunicación = QCA-based Hamming code circuit for nano communication network. Microprocessors and Microsystems, 84, 104237. https://doi.org/10.1016/j.micpro.2021.104237

John, A.A.; Subramanian, A.P.; Vellayappan, M.V.; Balaji, A.; Mohandas, H.; Jaganathan, S.K. (2015). Los nanotubos de carbono y el grafeno como candidatos emergentes en la neurorregeneración y la administración de neurofármacos = Carbon nanotubes and graphene as emerging candidates in neuroregeneration and neurodrug delivery. International journal of nanomedicine, 10, 4267. https://dx.doi.org/10.2147%2FIJN.S83777

Jornet, J.M.; Akyildiz, I.F. (2014). Modulación basada en pulsos de femtosegundo largo para comunicación en banda de terahercios en nanorredes = Femtosecond-long pulse-based modulation for terahertz band communication in nanonetworks. IEEE Transactions on Communications, 62(5), pp. 1742-1754. https://doi.org/10.1109/TCOMM.2014.033014.130403

Jornet, J.M.; Pierobon, M.; Akyildiz, I.F. (2008). Redes de nanocomunicación = Nano Communication Networks. Networks (Elsevier), 52, pp. 2260-2279. http://dx.doi.org/10.1016/j.nancom.2014.04.001

Jornet, J.M.; Pujol, J.C.; Pareta, J.S. (2012). PHLAME: un protocolo MAC consciente de la capa física para nanorredes electromagnéticas en la banda de terahercios = Phlame: A physical layer aware mac protocol for electromagnetic nanonetworks in the terahertz band. Nano Communication Networks, 3(1), pp. 74-81. https://doi.org/10.1016/j.nancom.2012.01.006

Kumar, M.R. (2019). Una nano-antena compacta basada en grafeno para la comunicación en nano-redes = A Compact Graphene Based Nano-Antenna for Communication in Nano-Network. Journal of the Institute of Electronics and Computer, 1(1), pp. 17-27. https://doi.org/10.33969/JIEC.2019.11003

Laajimi, R.; Niu, M. (2018). Nanoarquitectura de autómatas celulares de puntos cuánticos (QCA) que utilizan áreas pequeñas para circuitos digitales = Nanoarchitecture of Quantum-Dot Cellular Automata (QCA) Using Small Area for Digital Circuits. Advanced Electronics Circuits–Principles, Architectures and Applications on Emerging Technologies, pp. 67-84. https://www.intechopen.com/chapters/58619

Lee, S.J.; Jung, C.; Choi, K.; Kim, S. (2015). Diseño de redes inalámbricas de nanosensores para aplicaciones intracuerpo = Design of wireless nanosensor networks for intrabody application. International Journal of Distributed Sensor Networks, 11(7), 176761. https://doi.org/10.1155/2015/176761

Lu, J.; Yeo, P.S.E.; Gan, C.K.; Wu, P.; Loh, K.P. (2011). Transformando moléculas C60 en puntos cuánticos de grafeno = Transforming C60 molecules into graphene quantum dots. Nature nanotechnology, 6(4), pp. 247-252. https://doi.org/10.1038/nnano.2011.30

Massicotte, M.; Yu, V.; Whiteway, E.; Vatnik, D.; Hilke, M. (2013). Efecto Hall cuántico en el grafeno fractal: crecimiento y propiedades de los grafloconos = Quantum Hall effect in fractal graphene: growth and properties of graphlocons. Nanotechnology, 24(32), 325601. https://doi.org/10.1088/0957-4484/24/32/325601

Mitragotri, S.; Anderson, D.G.; Chen, X.; Chow, E.K.; Ho, D.; Kabanov, A.V.; Xu, C. (2015). Acelerando la traducción de nanomateriales en biomedicina = Accelerating the translation of nanomaterials in biomedicine. ACS nano, 9(7), pp. 6644-6654. https://doi.org/10.1021/acsnano.5b03569

Mohammadyan, S.; Angizi, S.; Navi, K. (2015). Nueva celda sumadora completa QCA de una sola capa basada en el modelo de retroalimentación = New fully single layer QCA full-adder cell based on feedback model. International Journal of High Performance Systems Architecture, 5(4), pp. 202-208. https://doi.org/10.1504/IJHPSA.2015.072847

Mohrehkesh, S.; Weigle, M.C. (2014). Optimización del consumo de energía en nanorredes de banda de terahercios = Optimizing energy consumption in terahertz band nanonetworks. IEEE Journal on Selected Areas in Communications, 32(12), pp. 2432-2441. https://doi.org/10.1109/JSAC.2014.2367668

Mohrehkesh, S.; Weigle, M.C.; Das, S.K. (2015). DRIH-MAC: una MAC de recolección iniciada por un receptor distribuido para nanorredes = DRIH-MAC: A distributed receiver-initiated harvesting-aware MAC for nanonetworks. IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 1(1), pp. 97-110. https://doi.org/10.1109/TMBMC.2015.2465519

Oh, D.K.; Jeong, H.; Kim, J.; Kim, Y.; Kim, I.; Ok, J.G.; Rho, J. (2021). Enfoques de nanofabricación de arriba hacia abajo hacia estructuras de escala nanométrica de un solo dígito = Top-down nanofabrication approaches toward single-digit-nanometer scale structures. Journal of Mechanical Science and Technology, pp. 1-23. https://doi.org/10.1007/s12206-021-0243-7

Patriarchi, T.; Cho, J.R.; Merten, K.; Howe, M.W.; Marley, A.; Xiong, W.H.; Tian, L. (2018). Imágenes neuronales ultrarrápidas de la dinámica de la dopamina con sensores codificados genéticamente diseñados = Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science, 360(6396). https://doi.org/10.1126/science.aat4422

Patriarchi, T.; Mohebi, A.; Sun, J.; Marley, A.; Liang, R.; Dong, C.; Tian, L. (2020). Una paleta ampliada de sensores de dopamina para imágenes multiplex in vivo = An expanded palette of dopamine sensors for multiplex imaging in vivo. Nature methods, 17(11), pp. 1147-1155. https://doi.org/10.1038/s41592-020-0936-3

Pierini, S. (2021). [Preprint]. Estudio experimental de nanocristales de perovskita como fuentes de fotón único para fotónica cuántica integrada = Experimental study of perovskite nanocrystals as single photon sources for integrated quantum photonics. Arxiv. https://arxiv.org/pdf/2105.14245.pdf

Pierobon, M.; Jornet, J.M.; Akkari, N.; Almasri, S.; Akyildiz, I.F. (2014). Un marco de enrutamiento para redes de nanosensores inalámbricos de recolección de energía en la banda de terahercios = A routing framework for energy harvesting wireless nanosensor networks in the Terahertz Band. Wireless networks, 20(5), pp. 1169-1183. https://doi.org/10.1007/s11276-013-0665-y

Pillers, M.; Goss, V.; Lieberman, M. (2014). Litografía por haz de electrones y despegue molecular para la fijación dirigida de nanoestructuras de ADN sobre silicio: de arriba hacia abajo se encuentra con de abajo hacia arriba = Electron-beam lithography and molecular liftoff for directed attachment of DNA nanostructures on silicon: Top-down meets bottom-up. Accounts of chemical research, 47(6), pp. 1759-1767. https://doi.org/10.1021/ar500001e

Reis, D.A.; Torres, F.S. (2016). Un simulador de defectos para el análisis de robustez de circuitos QCA = A Defects Simulator for Robustness Analysis of QCA Circuits. Journal of Integrated Circuits and Systems, 11(2), pp. 86-96. https://doi.org/10.29292/jics.v11i2.433

Sadeghi, M.; Navi, K.; Dolatshahi, M. (2020). Nuevos diseños eficientes de sumador completo y restador completo en autómatas celulares cuánticos = Novel efficient full adder and full subtractor designs in quantum cellular automata. The Journal of Supercomputing, 76(3), pp. 2191-2205. https://doi.org/10.1007/s11227-019-03073-4

Sardinha, L.H.; Costa, A.M.; Neto, O.P.V.; Vieira, L.F.; Vieira, M.A. (2013). NanoRouter: un diseño de autómatas celulares de puntos cuánticos = Nanorouter: a quantum-dot cellular automata design. IEEE Journal on Selected Areas in Communications, 31(12), pp. 825-834. https://doi.org/10.1109/JSAC.2013.SUP2.12130015

Sardinha, L.H.; Silva, D.S.; Vieira, M.A.; Vieira, L.F.; Neto, O.P.V. (2015). TCAM / CAM-QCA: Memoria direccionable de contenido (ternario) utilizando autómatas celulares de punto cuántico = Tcam/cam-qca:(ternary) content addressable memory using quantum-dot cellular automata. Microelectronics Journal, 46(7), pp. 563-571. https://doi.org/10.1016/j.mejo.2015.03.020

Sarveswaran, K. (2004). [Documento reservado]. Self-assembly and lithographic patterning of DNA rafts.DARPA Conf. Foundations of Nanoscience: Self-Assembled Architectures and Devices, Snowbird, UT. [Enlace no disponible]

Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. (2009). El memristor perdido, encontrado The missing memristor found. Nature, 459(7250), 1154. https://doi.org/10.1038/nature06932

Sun, F.; Zhou, J.; Dai, B.; Qian, T.; Zeng, J.; Li, X.; Li, Y. (2020). Sensores GRAB de próxima generación para monitorear la actividad dopaminérgica in vivo = Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nature methods, 17(11), pp. 1156-1166. https://doi.org/10.1038/s41592-020-00981-9

Suzuki, J.; Budiman, H.; Carr, T.A.; DeBlois, J.H. (2013). Un marco de simulación para la comunicación molecular basada en neuronas = A simulation framework for neuron-based molecular communication. Procedia Computer Science, 24, pp. 103-113. https://doi.org/10.1016/j.procs.2013.10.032

Tsioliaridou, A.; Liaskos, C.; Ioannidis, S.; Pitsillides, A. (2015). CORONA: un sistema de coordenadas y enrutamiento para nanorredes = CORONA: A Coordinate and Routing system for Nanonetworks. En: Proceedings of the second annual international conference on nanoscale computing and communication. pp. 1-6. https://doi.org/10.1145/2800795.2800809 | https://sci-hub.mksa.top/10.1145/2800795.2800809

Vassiliou, V. (2011). Problemas de seguridad en redes de comunicación a nanoescala = Security issues in nanoscale communication networks. 3rd NaNoNetworking Summit, pp. 1-53. http://www.n3cat.upc.edu/n3summit2011/presentations/Security_Issues_in_Nanoscale_Communication_Networks.pdf

Vavouris, A.K.; Dervisi, F.D.; Papanikolaou, V.K.; Karagiannidis, G.K. (2018). Un esquema de modulación energéticamente eficiente para nanocomunicaciones centradas en el cuerpo en la banda THz = An energy efficient modulation scheme for body-centric nano-communications in the THz band. En: 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST) (pp. 1-4). IEEE. https://doi.org/10.1109/MOCAST.2018.8376563

Wang, Z.F.; Liu, F. (2011). Puntos de cuánticos de grafeno como bloques de construcción para autómatas celulares cuánticos = Nanopatterned graphene quantum dots as building blocks for quantum cellular automata. Nanoscale, 3(10), pp. 4201-4205. https://doi.org/10.1039/C1NR10489F

Wang, W.L.; Wang, C.C.; Yao, X.W. (2019). Protocolo MAC basado en autoasignación de ranuras para nano-redes de recolección de energía = Slot self-allocation based mac protocol for energy harvesting nano-networks. Sensors, 19(21), 4646. https://doi.org/10.3390/s19214646

Wang, Y.; Wu, Q.; Shi, W.; He, X.; Sun, X.; Gui, T. (2008). Propiedades de radiación de la antena de nanotubos de carbono en el rango de terahercios / infrarrojos = Radiation properties of carbon nanotubes antenna at terahertz/infrared range. International Journal of Infrared and Millimeter Waves, 29(1), pp. 35-42. https://doi.org/10.1007/s10762-007-9306-9

Xia, Y.; Qiu, K. (2008). Diseño y aplicación de puerta lógica universal basada en autómatas celulares de puntos cuánticos = Design and application of universal logic gate based on quantum-dot cellular automata. En: 2008 11th IEEE International Conference on Communication Technology (pp. 335-338). IEEE. https://doi.org/10.1109/ICCT.2008.4716260 | https://sci-hub.mksa.top/10.1109/ICCT.2008.4716260

Yao, X.W.; Wang, W.L.; Yang, S.H. (2015). Optimización de parámetros conjuntos para redes perpetuas y capacidad máxima de red = Joint parameter optimization for perpetual nanonetworks and maximum network capacity. IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 1(4), pp. 321-330. https://doi.org/10.1109/TMBMC.2016.2564967

Yu, J.; Zhang, Y.; Yan, J.; Kahkoska, A.R.; Gu, Z. (2018). Advances in bioresponsive closed-loop drug delivery systems. International journal of pharmaceutics, 544(2), pp. 350-357. https://doi.org/10.1016/j.ijpharm.2017.11.064

Zarepour, E.; Hassan, M.; Chou, C.T.; Bayat, S. (2015). Análisis de rendimiento de esquemas de modulación sin portadora para redes inalámbricas de nanosensores = Performance analysis of carrier-less modulation schemes for wireless nanosensor networks. En: 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO) (pp. 45-50). IEEE. https://doi.org/10.1109/NANO.2015.7388653

Zhang, R.; Yang, K.; Abbasi, Q.H.; Qaraqe, K.A.; Alomainy, A. (2017). Caracterización analítica de la nanored In-Vivo de Terahercios en presencia de interferencia basada en el esquema de comunicación TS-OOK = Analytical characterisation of the terahertz in-vivo nano-network in the presence of interference based on TS-OOK communication scheme. IEEE Access, 5, pp. 10172-10181. https://doi.org/10.1109/ACCESS.2017.2713459


2nd December 2021

Recently, C0r0n @ 2Inspect has suffered censorship from the Blogger platform, by canceling the publication of the following articles:

"Identification of patterns in Coronavirus: nanorouters vaccines".

"Identification of patterns in Coronavirus vaccines: nanooctopuses and carbon-graphene nanotubes"

"Identification of patterns in blood of vaccinated people: GQD graphene quantum dots"

The statement appears to indicate that the "entry violates Blogger community guidelines." The notification emails describe the entries as "misleading content" without offering any additional arguments or explanations.

The censorship of perfectly argued, cited and referenced scientific articles violates the principles of freedom of expression, the right to information, as well as the fundamental rights that all researchers, professors, and scientists should have. In a very clear way, this platform does not offer any counter-argumentation with which this measure is justified, which shows that there are no scientific reasons, making it clear that they are political reasons. It is a real shame that in Spain and the European Union, champions of freedom, the rights and freedoms of people are violated in this way, scientific reflection, critical analysis, and free thinking are canceled.

From C0r0n @ 2Inspect Blogger is challenged to counter-argue the claims of the censored articles and to lift the restrictions to open the possibility to scientific debate. However, we all know what your answer is going to be. None. A long, slow silence. Do you know why? Because all the statements in these articles are the statements of the scientists who have published articles on the subject (perfectly identified and referenced), with which the great lie of our times is rationally and empirically demonstrated. That is the real reason, which leads Blogger to censor this work. This blog exposes the scientific truth and independently analyzes the vestiges and evidence that are being observed around vaccines, an extremely uncomfortable truth that no citizen of this world should know, despite being inoculated with them. This is the transparency with which the powerful act. However, remember that the truth, despite being handcuffed, censored, hidden ... is still the truth, even in the minority. Nothing can change that, not money, not power, not force, not your plans.

These clumsy and senseless maneuvers, far from achieving their purposes, sow the most powerful seed in people, curiosity and restlessness. Do not doubt that many have heard of these articles, and not finding them, they will look for them, they will want to know, learn more, and check if what was written is true and reasonable, others will better understand the world in which we find ourselves, others will they will understand everything and they will no longer be able to deceive them. The censorship of C0r0n @ 2Inspect is proof that the work done here may be the truth, a truth that cannot be hidden with more lies.

Fig. 1. C0r0n @ 2Inspect has been censored in three of its key articles

I take this opportunity to thank all the readers for their loyalty, encouragement and support. I also want to convey a message of hope, "when thought and reason are curtailed through censorship, freedom dies, but is reborn in all of us with more force." Do not forget what happened here, in this humble space of the Internet.

10th December 2021

Identification of patterns in corona virus vaccines: plasmonic nanoantenna

The analysis of the images obtained by the doctor (Campra, P. 2021) continues to focus on the detection of nanotechnology, circuits and chips, according to the latest findings, regarding the highly probable presence of nanorouters . On this occasion, a recurring pattern in the shape of a Balkan cross has been found that could be reminiscent of triangular blades, oriented towards a common vertex or confluence, see figure 1.

Fig. 1. Four-leaf bow tie pattern corresponding to plasmonic nanoantennas. The identification was produced from an image obtained by the doctor (Campra, P. 2021) in one of the Pfizer vaccine samples.

Actually, the pattern corresponds to a plasmonic nano-antenna in the shape of a double bow tie or a four-leaf bow tie, as referred to in the scientific literature (Chau, YFC; Chao, CTC; Rao, JY; Chiang, HP; Lim, CM; Lim, RC; Voo, NY 2016 | Ahmadivand, A .; Sinha, R .; Pala, N. 2015 | Gupta, N .; Dhawan, A. 2018) with the terminology "quad-triangles nanoantenna" and "plasmonic bowtie" .

The correspondence between the pattern obtained, the image observed in the sample and the images obtained from the literature does not seem to leave any doubt that the object found could be a plasmonic bow tie nano-antenna, also known by its acronym (PBNA Plasmonic Bowtie Nano Antenna ), as explained by (Chau, YFC; Chao, CTC; Rao, JY; Chiang, HP; Lim, CM; Lim, RC; Voo, NY 2016) in their research. In the words of the researchers "Broadband nano-antennas play a potential role in the nanophotonic field. Recently, plasmonic optical nano-antennas made by novel metallic nanoparticles (MNP) have generated great interest in research due to their ability to locate and enhance dramatically electromagnetic fields (EM) ", from which it can be inferred that they are antennas specially designed for the context of intracorporeal nanocommunication networks , fitting perfectly in the context of the previous finding on nanorouters and the field of" biosensors "( Haes, AJ; Van-Duyne, RP 2002). It is also indicated that "PBNAs (the nanoantennas discovered here) are generally designed to induce high local EM fields between the space that will be used in detection applications", which also fits with what was observed, since the nanoantenna was found together with other objects with a quadrangular crystalline structure, to which it could offer a local electromagnetic coverage. This could explain that there is a high dispersion of components, which without being united on the same board, could operate and interact with each other. It might be enough to just be in the same hydrogel environment to be able to function. In other words, microelectronic devices made up of distributed (separate) parts could be developed, which would explain the large number of quadrangular objects observed under the microscope. It could be understood as an electronic micro / nano puzzle that allows to perform the tasks of the interface of the nanocommunication network for the human body (see intracorporal nanocommunication networks and explanation of the entry on nanorouters ).

On the other hand, the literature includes different types of bow tie plasmonic antennas, although one of the most relevant peculiarities is the characteristic that the antenna has hollow cavities, as shown in figure 1. This means that the manufacturing process is based on the electron lithography technique, which helps to shape said optical nanocavities, which are useful to improve the performance and field intensity of the antenna (Chau, YFC; Chao, CTC; Rao, JY; Chiang, HP; Lim, CM; Lim, RC; Voo, NY 2016). It cannot be ruled out that the same electron lithography technique had been used for the production and assembly of the rest of the elements observed in the images of the branch, captured by Dr. Campra. In fact, there are multiple bibliographic references that allude to this technique, obtaining results very similar to those observed (Hu, W .; Sarveswaran, K .; Lieberman, M .; Bernstein, GH 2004 | Hu, W .; Sarveswaran, K .; Lieberman, M .; Bernstein, GH 2005 | Kindness, SJ; Jessop, DS; Wei, B .; Wallis, R .; Kamboj, VS; Xiao, L .; Degl'Innocenti, R. 2017), being also implicated in the creation of QCA circuits, such as those observed in the previous entry on nanorouters. Another quite prominent technique that has been used in the production of this plasmonic nanoantenna is the well-known "Focused Ion Beam" or what is the same " Focused Ion Beam", which would be used in the manufacture of quantum circuits (Nemcsics, Á. 2017)

Fig. 2. The reduction of circuits to the quantum scale involves QCAs (Quantum Cell Automata), this is the production of circuits based on quantum dot cells, produced with the Ion Beam technique. (Nemcsics, Á. 2017)

It consists of ion beam milling on a specific surface, which allows creating the cavities already mentioned by (Chau, YFC; Chao, CTC; Rao, JY; Chiang, HP; Lim, CM; Lim, RC; Voo, NY 2016). This surface is usually a semi or superconducting metamaterial such as graphene, copper or silicon, among others. In fact, performing an advanced search with these concepts, the following examples are found in the scientific literature, applied to bow tie plasmonic antennas, see figure 3.

Fig. 3. Bow tie-shaped plasmon nanoanthenas created with the "Focused Ion Beam" technique. Comparison with respect to the pattern observed in the vaccine samples.

All the indications that have been explained in this blog lead to the presence of nanotechnology in vaccine vials, aimed at creating a network of wirelessly connected nanodevices and nanosensors, which is installed inside the body of inoculated people. Finding plasmonic nanoantennas, after having found the most possible circuit of a nanorouter, does not seem to be a coincidence and could confirm the presence of these components in what is known as a wirelessly connected intra-body nanocommunication network, in turn confirming the phenomenon of the emission of MAC addresses after having corroborated the existence of the necessary hardware, and therefore the introduction of undeclared components.


Bibliografía

Ahmadivand, A.; Sinha, R.; Pala, N. (2015). Modos resonantes de plasmón híbrido en nanoantenas de cuatro triángulos metalodieléctricos moleculares = Hybridized plasmon resonant modes in molecular metallodielectric quad-triangles nanoantenna. Optics Communications, 355, pp. 103-108. https://doi.org/10.1016/j.optcom.2015.06.040

Campra, P. (2021a). Observaciones de posible microbiótica en vacunas COVID RNAm Version 1. http://dx.doi.org/10.13140/RG.2.2.13875.55840

Campra, P. (2021b). Detección de grafeno en vacunas COVID19 por espectroscopía Micro-RAMAN. https://www.researchgate.net/publication/355684360_Deteccion_de_grafeno_en_vacunas_COVID19_por_espectroscopia_Micro-RAMAN

Campra, P. (2021c). MICROSTRUCTURES IN COVID VACCINES: ¿inorganic crystals or Wireless Nanosensors Network? https://www.researchgate.net/publication/356507702_MICROSTRUCTURES_IN_COVID_VACCINES_inorganic_crystals_or_Wireless_Nanosensors_Network

Chau, Y.F.C.; Chao, C.T.C.; Rao, J.Y.; Chiang, H.P.; Lim, C.M.; Lim, R.C.; Voo, N.Y. (2016). Actuaciones ópticas ajustables en una matriz periódica de nanoantenas de pajarita plasmónica con cavidades huecas = Tunable optical performances on a periodic array of plasmonic bowtie nanoantennas with hollow cavities. Nanoscale research letters, 11(1), pp. 1-9. https://doi.org/10.1186/s11671-016-1636-x

Chen, Y.; Chen, Y.; Chu, J.; Xu, X. (2017). Antena de apertura tipo pajarita con puente para producir un punto caliente electromagnético = Bridged bowtie aperture antenna for producing an electromagnetic hot spot. Acs Photonics, 4(3), pp. 567-575. https://doi.org/10.1021/acsphotonics.6b00857

Gupta, N.; Dhawan, A. (2018). Arreglos de nanoagujeros de pajarita con puente y pajarita con puente cruzado como sustratos SERS con sintonización de puntos de acceso y respuesta SERS de múltiples longitudes de onda = Bridged-bowtie and cross bridged-bowtie nanohole arrays as SERS substrates with hotspot tunability and multi-wavelength SERS response. Optics express, 26(14), pp. 17899-17915. https://www.osapublishing.org/DirectPDFAccess/41EA5AEB-6B91-4292-8F53CD9DCE98494D_394903/oe-26-14-17899.pdf

Haes, A.J.; Van-Duyne, R.P. (2002). Un biosensor óptico a nanoescala: sensibilidad y selectividad de un enfoque basado en la espectroscopia de resonancia de plasma de superficie localizada de nanopartículas triangulares de plata = A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. Journal of the American Chemical Society, 124(35), pp. 10596-10604. https://doi.org/10.1021/ja020393x

Hu, W.; Sarveswaran, K.; Lieberman, M.; Bernstein, G.H. (2004). Litografía por haz de electrones de menos de 10 nm utilizando revelado en frío de poli (metacrilato de metilo) = Sub-10 nm electron beam lithography using cold development of poly (methylmethacrylate). Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 22(4), pp. 1711-1716. https://doi.org/10.1116/1.1763897

Hu, W.; Sarveswaran, K.; Lieberman, M.; Bernstein, G.H. (2005). Litografía por haz de electrones de alta resolución y nanopatrones de ADN para QCA molecular = High-resolution electron beam lithography and DNA nano-patterning for molecular QCA. IEEE Transactions on Nanotechnology, 4(3), pp. 312-316. https://doi.org/10.1109/TNANO.2005.847034

Kindness, S.J.; Jessop, D.S.; Wei, B.; Wallis, R.; Kamboj, V.S.; Xiao, L.; Degl’Innocenti, R. (2017). Modulación de frecuencia y amplitud externa de un láser de cascada cuántica de terahercios utilizando dispositivos de metamaterial / grafeno = External amplitude and frequency modulation of a terahertz quantum cascade laser using metamaterial/graphene devices. Scientific reports, 7(1), pp. 1-10. https://doi.org/10.1038/s41598-017-07943-w

Kinzel, E.C.; Xu, X. (2010). Extraordinaria transmisión de infrarrojos a través de una matriz de apertura periódica de pajarita = Extraordinary infrared transmission through a periodic bowtie aperture array. Optics letters, 35(7), pp. 992-994. https://doi.org/10.1364/OL.35.000992

Kollmann, H.; Esmann, M.; Becker, S.F.; Piao, X.; Huynh, C.; Kautschor, L.O.; Lienau, C. (2016). Espectroscopía ultrarrápida de tercer armónico de nanoantenas individuales fabricadas mediante litografía por haz de iones de helio = Ultrafast third-harmonic spectroscopy of single nanoantennas fabricated using helium-ion beam lithography. In Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IX (Vol. 9759, p. 975908). International Society for Optics and Photonics. https://doi.org/10.1117/12.2212689

Kummamuru, R.K.; Orlov, A.O.; Ramasubramaniam, R.; Lent, C.S.; Bernstein, G.H.; Snider, G.L. (2003). Operación de un registro de desplazamiento de autómatas celulares de puntos cuánticos (QCA) y análisis de errores = Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors. IEEE Transactions on electron devices, 50(9), pp. 1906-1913. https://doi.org/10.1109/TED.2003.816522

Nemcsics, Á. (2017). Epitaxia de gotitas como herramienta para la realización de circuitos basados ​​en QD = Droplet Epitaxy as a Tool for the QD-Based Circuit Realization. En: Nonmagnetic and Magnetic Quantum Dots. IntechOpen. https://www.intechopen.com/chapters/56965

Yu, N.; Cubukcu, E.; Diehl, L.; Bour, D.; Corzine, S.; Zhu, J.; Capasso, F. (2007). Antena láser de cascada cuántica plasmónica Bowtie = Bowtie plasmonic quantum cascade laser antenna. Optics Express, 15(20), pp. 13272-13281. https://doi.org/10.1364/OE.15.013272

" Believe none of what you hear and question everything you see "